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Kokkos Usage

• View of views
• Team parallelism
• Team scratch memory
• Atomic, RandomAccess, and Unmanaged memory traits
• parallel {for,reduce,scan} patterns
• Custom reduction types
• Dynamic scheduling
• Soon: TeamVectorRange
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Opacity: Pictographic Representation

Credit: Chris Fontes – XCP-5
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Calculating an Opacity

The opacity in a material of density ρ, electron temperature Te, and radiation
temperature Tr , is given by:

κtot (ρ (r) ,Te (r) ,Tr (r) , hν) =∑
i`jm

N i` (ρ (r) ,Te (r) ,Tr (r) )
ρ (r)

(
σ
(bound–bound)
i,`→m (hν) + σ

(bound–free)
i`→jm (hν)

)

+
Ne (r)
ρ (r)

1∫
−1

σs (µ, hν) dµ+ κ(free-free)(hν)
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League of Teams – Spatial Cells
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Calculating an Opacity

The opacity in a material of density ρ, electron temperature Te, and radiation
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League of Teams – Spatial Cells
Team of Threads – Photon energies
Serial – Ion stages
Vectors – Atomic Transitions
Atomic Populations – calculated prior to opacity calculation but in the same league
team loop
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Calculating the Atomic Populations

Solving for populations involves constructing and solving a block tri-diagonal linear
system many times.
parallel for cells

calc populations –
while not converged {
Ne = get ne guess()

build matrix –
parallel for ion stages

parallel for transitions

solve matrix –
serial for block rows

parallel for matrix rows

parallel for matrix columns

calc residual

}
calc opacity –

parallel for photon energies

serial for ion stages

parallel for transitions

League of Teams
Team of Threads
Serial
Vectors
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Test Problem

• Only one spatial cell: ρ = 10−3 g/cc, Te = 5 eV, Tr = 20 eV.
• Iron opacity calculated from a reduced atomic model (rDCA) meant for inline

implementations like this one.
– 27 ion stages – number of bound electrons + 1 for case when atom has no bound

electrons
– ∼ 28 energy levels per ion stage
– ∼ 750 unknowns.
– ∼ 12k photo-transitions

• Continuous energy total opacity evaluated at 500k logarithmically spaced
photon energies between 10−2.5 eV and 101.5 eV.

• On the GPU: implemented photon energy domain decomposition to maximize
GPU resource usage.

• On the CPU: all resources allocated to a single thread team.
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Performance Results

• Power 9 Node: gcc 7.4.0, cuda 9.2
– Power9 OpenMP – 5.51 s
– 1 V100 cuda – 0.65 s
– GPU speedup – 8.5x
– With power consumption – 9.1x

• CTS-1 (LANL Grizzly) node: Intel 18.0.2
– OpenMP – 5.76 s
– GPU speedup – 8.9x or 9.8x
– With power consumption – 7.1x or 7.8x

• X86 V100 Node: Intel 19.0.2, cuda 10.1
– Skylake OpenMP – 6.29 s
– 1 V100 cuda – 0.59 s
– Single GPU speedup – 10.7x
– With power consumption – 7.5x
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Takeaways

• We see between 7-9x improvement in performance per Watt for this test case
using the V100 over 3 different CPUs

• Kokkos enabled GPU speedup despite most of my effort being focused on
optimization for commodity type clusters

• We find the Kokkos hierarchical parallelism:
– maps well to this application
– provides tools to concretely express complex parallelism

Demo
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